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Abstract

The medial septum-diagonal band (MS/DB) contains primarily cholinergic and GABAergic neurons that project to the hippocampus, and
are important for learning and memory. Whole-cell patch clamp methods with brain slices from p11-p20 rats were used to measure MS/DB
cell responses to focal somatic application of 1 mM acetylcholine (ACh) and a series of current pulses was applied in order to assess firing
frequencies and the presence of hyperpolarization-activated currents (lh). We identified three types of cells: (1) cells with fast inward currents
blocked by methyllycaconitine (MLA) with slow firing rates (3—12 Hz), accommodating action potentials, andne20)( (2) cells with
currents that had both fast (MLA-sensitive) and slow components that were blocked with mecamylamine (MEC) that showed fast firing (up
to 60 Hz) and slow firing (up to 3 Hz), with accommodating and non-accommodating action potentidls)( 33% of which had Ih; and (3)
cells not responsive to ACh with moderate firing rates (10-42 Hz), some with accommodating action potentials and some witBput (
of which 92% had Ih. These results are among the first to demonstrate functional nicotinic receptors in the MS/DB. The data suggest that
these receptors include/ and nona7 subtypes and that the expression of each is correlated with firing frequency and the presence of Ih.
Responses to ACh were not affected by tetrodotoxin (TTX) and £i@lwere blocked by MLA or MLA and MEC, suggesting that these
currents involve direct activation of nicotinic receptors.
© 2005 Elsevier Ireland Ltd. All rights reserved.

Keywords: Alpha 7; Septohippocampal; Septum; Nicotinic; MSDB; Alpha 4 beta 2

Neurons in the medial septum/diagonal band of Broca shown to be GABAergic and slow firing cells with no lh
(MS/DB) are primarily cholinergic and GABAergic cellsthat  cholinergic[8,9].
project to the hippocampus and regulate excitability of prin-  Relative to other brain regions such as the hippocampus
cipal cells and interneurond,11]. The septohippocampal [2,5,12] there has been a paucity of information regarding
pathway is important for learning and memory-related behav- the presence of functional nicotinic receptors in the MS/DB.
iors, and degeneration of cholinergic MS/DB neurons can be The initial reports describing single MS/DB cell nicotinic
seen in neuropathological disorders such as Alzheimer’s dis-responses showed that iontophoretic application of nicotine
easd3]. Firing patterns of MS/DB neurons are linked with inhibited cell firing as measured by extracellular recordings
their neurochemical identities such that fast firing cells gener- in vivo [24,25] In the brain slice, recent work by Wu et al.
ating current in response to hyperpolarization (Ih) have been[23] suggested that depolarization produced by activation
of MS/DB nicotinic receptors could occur only indirectly
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was little evidence for MS/DR:7 nicotinic receptors based bath and responses were recorded for 2—3 min after no evoked
on data (1) showing methyllycaconitine (MLA) was inef- response could be detected.
fective at blocking depolarizations produced by 20-s appli-  To assess firing frequency and currents in response to
cations of nicotine, and (2) data from other grolipg] in hyperpolarization (lh), a series of hyper- and depolarizing
which a7 receptors were not detected in the septum. More currents was applied. The membrane potential of each cell
recently, however, Henderson et f10] showed evidence  wasfirstheld at-75 mV and a series of (1 s) hyper- and depo-
for direct activation of MS/DB cholinergic receptors with larizing pulses (0—200 pA) were applied. The membrane was
focal somatic “puff” applications of acetylcholine (ACh). then adjusted te-60 mV and the same series of pulses were
These authors reported that depolarizations in response tapplied. Resulting voltages were—150 mV for maximum
ACh were blocked with the nicotinic receptor antagonist hyperpolarization ané-—20 mV for maximum depolariza-
mecamylamine (MEC) (2pM) and partially or not blocked  tion. Firing frequencies for each cell were determined with
with tetrodotoxin (TTX), CdCl, or antagonists of other the series from the-60 mV membrane potential using the
ionotropic receptors. Also, Henderson et [dl0] reported same current pulse required to depolarize the cell to thresh-
MLA-sensitive currents, suggesting the presence of MS/DB old from —75mV [11]. Accommodation was defined as a
o7 nicotinic receptors. Since the available data regarding reduction in firing rate when comparing the first 0.5s of
MS/DB nicotinic receptors are limited and conflicting, we depolarization to the second 0.5 s and the presence of Ih was
used whole-cell patch clamp methods to assess MS/DB cellevaluated using the first hyperpolarizing pulse freB0 mV.
firing frequencies, the presence of Ih and responses to focalCells were classified as either positive or negative for Ih based
somatic ACh application. Evoked responsesto ACh were alsoon the presence of a clear depolarizing &g
tested for sensitivity to MEC, MLA, TTX and Cdgl Three basic nicotinic response profiles were identified
Transverse whole brain slices from male Sprague—Dawley based on responses to focal somatic application of ACh in
rats (p11—p20) were prepared as described previdasly the presence of atropine. Type-1 cels=(20) responded to
During experiments, slices were perfused (2 ml/min) with ACh with fast inward currents (time to peak =28.4.8 ms)
normal ACSF containing (in mM) 126 NaCl, 3 KCI, 1.2 (Fig. 1A). The peak current amplitudes were 1821.5 pA
NaH,POy, 1.5 MgSQ, 11 p-glucose, 2.4 CaG] 25.9 and these were blocked by th&-selective antagonist MLA
NaHCQ; and 0.008 atropine sulfate saturated with 95% (50 nM, n=9) (Fig. 1B and C). Type-1 cells had slow fir-
02-5% CQ at 30°C. MS/DB cells were visualized with  ing rates (7.6t 1.0Hz) and all had accommodating action
infrared differential interference contrast microscopy (IR potentials Fig. 2A). No type-1 cell showed Ih in response to
DIC) using a Nikon E600FN microscope. Whole-cell patch hyperpolarization.
clamp recordings were made with glass pipettes (39 M Type-2 cells § = 46) responded to ACh with slow (time to
containing an internal solution of (in mM) 125 K-gluconate, peak =235.4-28.1 ms) Fig. 1G) and a combination of both
1 KCI, 0.1 CaC$, 2 MgCh, 1 EGTA, 2 MgATP, 0.3 slow and fast inward currents (time to peak = 35.2.2 ms)
NagGTP and 10 HEPES. Cells were held afOmV (Fig. 1D). These currents were completely blocked witbh\d
and a—-10mV/10ms test pulse was used to determine MEC (n=11) and contained both MLA-sensitive (50 nM)
series and input resistances. Cells with series resistanceand MLA-resistant componentBi@. 1E, F, Hand I). Type-2
>52 MQ or those requiring holding currents >250 pA were cells were divided into two groups (2A and 2B). Type-2A
not included in the final analysis. Series resistance aver-cells (z =28) had biphasic kinetic profiles containing a well-
age was 20.2 1.4 MQ. Responses to somatic application defined fast and slow componefid. 1D) with peak current
of ACh were measured in voltage clamp mode and responsesamplitudes of 172 25.1 pA and on average had moderate
to current injections were measured in current clamp mode. or slow firing rates (10.5:1.7 Hz) Fig. 2B). In 23% of
Signal acquisition and data analyses were done as previouslyhese cells, Ih was present and 54.5% showed accommo-
described21]. Focal somatic application of ACh (1 mM)was dation. Cells classified as type-2B had monophasic kinetic
performed with pipettes attached to a Picospritzer Il (General profiles Fig. 1G) (»n=18) and peak ACh-evoked current
Valve, Fairfield, NJ, USA) using 10-20 psi for 5-30 ms. amplitudes of 78.3 10.7 pA. On average, Type-2B cells had
In experiments using MLA, MEC, TTX, or Cdglbase- fast firing action potentials in response to depolarizing steps
line responses to ACh were recorded every 30 s for 2 min and(27.9+ 6.9 Hz) Fig. 2C). In 63% of type-2B cells, Ih was
the above antagonists/toxins were then introduced using apresent and 12.5% of these cells showed accommodation.
syringe pump (Kd Scientific, Holliston, MA, USA). For TTX Itis known that MLA-sensitive currents (putatively medi-
and CdC} experiments, responses were measured for 8 minated bya7 receptors) have faster activation kinetics than
after the beginning of bath application and in some cases MLA-resistant currentg19]. In type-2 cells, the presence
this was followed by application of both MLA and MEC. of two distinct activation kinetic profiles could reflect dif-
For MLA experiments, responses were recorded for 2-3 min ferences in the ratio of MLA-sensitive and MLA-resistant
after no evoked response could be detected. For experimentsicotinic receptor subtypes. In support of this, type-2B cells
using both MLA and MEC, responses were recorded until had much slower time-to-peak values (23%.48.1 ms) than
there was a stable reduction in evoked current in the pres-type-2A cells (35.2-4.2 ms), and following application of
ence of MLA (2.5-7.5min) and then MEC was added to the 50 nM MLA, peak currents from type-2B cells were reduced
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Fig. 1. Responses to focal somatic application of 1 mM ACh, current reduction/block with MLA, MEC or both. (A) Focal somatic application of 1 mM ACh
produces a fast inward current in a type-1 cell. (B) Scatter plot (left) and associated traces (right) illustrating the effect of 50 nM MLA in thi asuine ce
(A). (C) Group data for type-1 cells showing the average{%.E.M.) magnitude of peak currents following MLA relative to baseline (#5327%,n =9).

(D) Focal somatic application of 1 mM ACh produces an inward current in a type-2A cell. (E) Scatter plot (left) and associated traces (riglmpillhstrat
effect of sequential application of 50 nM MLA and®1 MEC in the same cell as in (D). (F) Group data for type 2A cells showing the averageS%.M.)
magnitude of peak currents following MLA and MLA + MEC relative to baseline (MLA: 2 8.6%,2=7; MLA+MEC: 6.7+ 2.3%,n =5). (G) Focal somatic
application of 1 mM ACh produces an inward current in a type-2B cell. (H) Scatter plot (left) and associated traces (right) illustrating the effeentials
application of 50 nM MLA and M MEC in the same cell as in (G). (I) Group data for type 2B cells showing the averageS%.M.) magnitude of peak
currents following MLA and MLA + MEC relative to baseline (MLA: 53492.2%,n=6; MLA + MEC: 16.7+ 3.4%,n=6). Scale bars in (A, B, D, E, G and

H) are 100 pA/100 ms.

by 52.6+ 4.6% whereas peak currents from type-2A cells (14.8+3.4Hz). lh was present in 92% of these cells and
were reduced by 71:85.7% (compare examples lifg. 1E 38.5% showed accommodation. For a summary of the above
and H, and F and I). Even though the ACh-evoked responsesdata, sedable 1

of the type-2B cells had monophasic kinetics, we hypoth-  In order to investigate whether the inward currents
esize that the portion of type-2B current blocked by MLA induced by focal somatic application of ACh resulted from
was mediated mainly through?7 receptors. However, we action potential- or C4 channel-dependent neurotransmit-

cannot rule out the possibility of other (netv) MLA- terrelease, we administereg.M TTX and 200..M CdCl, to
sensitive channels contributing to the type-2B whole-cell type-1 cells Fig. 3A and B) (2 =5) and type-2 cellsHig. 3C
responses. and D) ¢=5). In each case there was little or no evidence

Type-3 cells £=19) were unresponsive to ACh appli- for a reduction in peak current (type-1: 9%9.0%; type-2:
cation (data not shown) and had moderate firing rates 102.7+ 6.1%).

Table 1
Summary of cell characteristics in accord with response to somatic application of ACh (response type)
Response type % ACh-evoked current Current clamp

TTP (ms) Peak (pA) FF (Hz) %lh %Accom
Type 1 24 28.4+- 0.8 138+ 21.5 7.0+ 1.0 0 100
Type 2A 33 35.2+ 4.2 172+ 25.1 10.5+ 1.7 23 54.5
Type 2B 21 235.4+ 28.1 78.3+ 10.7 27.9+ 6.9 63 125
Type 3 22 - - 14.8t 3.4 92 38.5

%: Percent of cells by type; TTP: time to peak; peak: peak amplitude of response; FF: firing frequency; %lh: percent showing |h; %Accom: percent showing
accommodating action potentials. Values are presented astr@&nM. where appropriate.
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Fig. 3. Application of TTX and CdGldid not reduce the magnitude of cur-
rents produced by focal somatic application of 1 mM ACh in type-1 or type-2
cells. (A) Scatter plot showing no effect oM TTX and 200uM CdClp

on the amplitude of ACh-evoked currents in type-1 cells. (B) Corresponding
currenttraces from an individual experimentincluded in (A), where the black

Fig. 2. Current clamp traces showing representative responses to hyper-trace (corresponding time plotted as #1 in A) is a baseline response and the

and depolarization in type-1, type-2A and type-2B cells. (A) Current clamp
recording from a type-1 cell showing slow firing and accommodating action
potentials with no Ih. (B) Current clamp recording from a type-2A cell

gray trace (corresponding time plotted as #2 in A) is followingM. TTX
and 20QuM CdCly. (C) Scatter plot showing no effect ofuM TTX and
200pM CdCl, on the amplitudes of ACh-evoked currents in type-2 cells.

showing a moderate firing rate and in this case no Ih. (C) Current clamp (D) Corresponding current traces from an individual experiment included
recording from a type-2B cell showing fast firing and Ih. Scale bars are in (C), where the black trace (corresponding time plotted as #1 in C) is a

50mV/0.5s.

baseline response and the gray trace (corresponding time plotted as #2 in
C) is following 1uM TTX and 200nM CdCl,. Scale bars in (B and D) are

This is among the first reports to show direct evidence for 100 pA/100 ms.

functional nicotinic receptors in the MS/DRO0]. We found
~78% of MS/DB cells have functional nicotinic receptors as

(slow firing rates, no Ih and accommodating action potential

indicated by their response to somatic application of 1 mM trains).

AChin the presence of atropine. Previous reports have shown

that fast firing cells in the MS/DB are GABAergic and slower
firing cells are cholinergi§8,9,20] which together with the

In situ hybridization[4] and immunocytochemicdlL0]
studies have found evidence fo#l, 2 and o7 NAChR
subunits in the MS/DB. Because it has been shown that

present data, suggest that cells exclusively expressing MLA-low concentrations of MLA are selective fe7 nicotinic
sensitive nicotinic receptor currents are cholinergic whereasreceptorg13], and that there is little evidence for MS/DB
cells that express both MLA-sensitive and resistant currentsnicotinic receptor subtypes other thaf7, a4 and p2, it

are GABAergic, cholinergic, or both. The association of spe-

cific nicotinic receptor subtypes with identified GABAergic

and cholinergic MS/DB neurons may suggest an ability for

differential nicotinic modulation of these cell types.

Interestingly, although type-2A and -2B cells contained

both MLA-sensitive and MLA-resistant currents, type-2B

appears the currents in the present report involve activation
of a7 (MLA-sensitive) and possiblg4p2 (MLA-resistant)
nicotinic receptor subtypes. Additional evidence for the pres-
ence of bothu7 and nona’7 NAChR in type-2A cells comes
from a recent study utilizing a new antagonist TMPL],
which produces areadily reversible blockafreceptors and

cells had higher firing rates, a higher percentage show-long-term inhibition of nona7 nAChR. This study showed
ing lh, and a lower percentage showing accommodation. that TMPH spares the rapid transient portion of type-2A
Because higher firing rates, the presence of Ih and non-responses and has a prolonged effect on theaboreom-
accommodating action potential trains are consistent with ponent of the responses.

GABAergic cell firing profileq8,9,20] our findings suggest
that cells with GABAergic firing profiles are likely to contain
less MLA-sensitive current than those with cholinergic firing
profiles. Inversely, those cells with more MLA-sensitive cur-
rent are likely to maintain cholinergic-type firing profiles.

Our results are in general agreement with those reported
by Henderson et a[10], despite the fact that these authors
used alternative neuronal identification procedures. Hender-
son et al[10] reported in rats and mice thaf receptors were
expressed in all cells with cholinergic firing profiles and in

Our data are further consistent with this idea as type-1 cells, 10% of GABAergic cells as identified with an in vivo marker
which showed the relatively largest amount of MLA-sensitive for parvalbumin. Also, these authors reported rahrecep-
current, showed cholinergic-type firing profiles exclusively torsin50% of GABAergic neurons. Inthe presentreport, cells
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were identified as cholinergic or GABAergic based on firing appear to be potential therapeutic targets for protecting vir-

profiles and the presence of [8,9]. Under the assumption tually all of the MS/DB cholinergic neurons and likely some

that cells having firing rates 10 Hz with 1h are GABAergic GABAergic neurons as well.

and cells having firing rates <10 Hz with no Ih are cholinergic,

our data show that60% of GABAergic cells did notrespond

to ACh (type-3) and that40% had botlx7 and hone7 cur- Acknowledgements
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